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We consider a plane electromagnetic wave incident on a periodic stack of dielectric layers. One of the
alternating layers has an anisotropic refractive index with an oblique orientation of the principal axis relative
to the normal to the layers. It was shown recently that an obliquely incident light, upon entering such a periodic
stack, can be converted into an abnormasially frozen modewith drastically enhanced amplitude and zero
normal component of the group velocity. The stack reflectivity at this point can be very low, implying nearly
total conversion of the incident light into the frozen mode with huge energy density, compared to that of the
incident light. Supposedly, the frozen mode regime requires strong birefringence in the anisotropic layers—by
an order of magnitude stronger than that available in common anisotropic dielectric materials. In this paper we
show how to overcome the above problem by exploiting higher frequency bands of the photonic spectrum. We
prove that a robust frozen mode regime at optical wavelengths can be realized in stacks composed of common
anisotropic materials, such as YVCLiNbO3, CaCGQ;, and the like.
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[. INTRODUCTION incident on a semi-infinite photonic crystal with the electro-

magnetic dispersion relation shown in Fig. 1. If the fre-

guencyw is close to the band edge frequengy in Fig. 1,

then the incident wave will be totally reflected back into
U= dwl ik, (1)  space, as seen in Fig. 2.

. . In another case, where the incident wave frequency is
wherek is the Bloch wave vector and=w(k) is the corre-  close to the characteristic valug, or wy in Fig. 1, some
sponding frequency. At certain frequencies, the dispersioportion of the incident wave will be transmitted in the pho-
relationw(K) of a photonic crystal develops stationary pointstonic crystal, but none in the form of the slow mode corre-

R sponding to the respective stationary point. This means, for
dwldk =0, (2)  example, that at the frequenay, the transmitted light is a

in the vicinity of which the group velocity vanishes. Zero EIOCh ¥vave ‘;]Vith finite group velocitﬁ/ and wave number dif-
group velocity usually implies that the corresponding Bloch€rént from that corresrp])ondmg to the fpl)omtn Fig. 1. i
eigenmode does not transfer electromagnetic energy. Indeeéilsl-et us turn now to the stationary inflection point 0 of the

h h fi60f a Bloch mod persion relation in Fig. 1, where both the first and the
with certain reservations, the energy fiBxf a Bloch mode second derivatives of the frequeneywith respect tk van-

In photonic crystals, the speed of light is defined as the
wave group velocityd,

Is ish, while the third derivative is finite,

S © é—w—o @—0 o #0 at dk=
where W is the electromagnetic energy density, associated gk ' ok2 a3 alw=wo an ko-
with this mode. If\W is limited, then the group velocity and ()

the energy fluxS vanish simultaneously at any stationary
point (2) of the dispersion relation. Such modes are com-The frequencyw, of stationary inflection point is associated
monly referred to as slow modes, or slow light. Examples ofwith the so-calledrozen mode regimgl—3]. In such a case,
different stationary point$2) are shown in Fig. 1, where the incident plane wave can be transmitted into the photonic
each of the respective frequencieg, wp, wg, and wg is  crystal with little reflection, as seen in Fig. 2. Having entered
associated with slow light. the photonic slab, the light is 100% converted into the slow
A common problem with slow modes is that most of themmode with infinitesimal group velocity and drastically en-
cannot be excited in semi-infinite photonic crystals by inci-hanced amplitude. Under the frozen mode regime, vanish-
dent light. Indeed, consider a plane monochromatic wavéngly small group velocityl in Eq. (3) is offset by a huge
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where§ is the fixed energy flux of the incident waveis the
portion of the incident light transmitted into the semi-infinite
photonic crystal, and

" (@)
TN )

Remarkably, the transmittaneeat w = wq remains finite and
may even be close to unity, as shown in Fig. 2. The latter
implies that a significant portion of the incident light is con-
verted into the frozen mode with nearly zero group velocity
and huge amplitude, compared to that of the incident wave.
In reality, the electromagnetic energy dendiyof the frozen
mode will be limited by such factors as absorption, nonlinear
effects, imperfection of the periodic dielectric array, devia-
tion of the incident radiation from a perfect plane monochro-
e - - matic wave, finiteness of the photonic slab dimensions, etc.
wava number & Still, with all these limitations in place, the frozen mode
. o regime can be very attractive for various practical applica-
FIG. 1. (Color onling. An example of electromagnetic disper- tions.
sion relationw(k) with vgrious stationary poir_l_tséi) extreme points From now on we restrict ourselves to the case of lossless
a andb of the respective spectral branchék) a photonic band o jngic |ayered mediaperiodic stacks which can be
edgeg, (iii) a stationary inflection point 0. Each stationary point is viewed as one-dimensional photonic crystals. According to
associated with slow light. The wave numikeand the frequency L . . .
. . . . ) L [2], at normal incidence, the frozen mode regime in a peri-
are given in units of 1/ andc/L, respectivelyL is the primitive ; . .
: - odic stack can occur only if some of the layers display suf-
translation of the periodic array. g . A :
ficiently strong circular birefringencé-araday rotation In
addition, each unit cell of the periodic layered array must
value of the energy density. As a result, the energy flu) contain at least two layers with significant and misaligned
associated with the frozen mode remains finite and compan-plane anisotropy. If the above conditions are not met, the
rable with that of the incident wave. In the vicinity of the electromagnetic dispersion relation of the periodic stack can-
frozen mode frequency,, the electromagnetic energy den- not develop a stationary inflection poit4) and, therefore,
p y p
sity W associated with the slowfrozen mode displays a cannot support the frozen mode regime at normal incidence.

55

Fregquency o

45

resonancelike behavior, In the microwave frequency range, one can find a number of
1 T T T
nat -
FIG. 2. (Color onling. Transmittancer as a
. 06k ] function of incident light frequencyw for the
g semi-infinite photonic slab with the dispersion re-
% lation presented in Fig. 1. The characteristic fre-
5 quenciesw,, w,, wg, and wy are associated with
= 0.6l i the respective stationary points in Fig. 1. At
= wy (within the photonic band gaghe incident
g light is totally reflected by the slab. Frequeney
s is expressed in units af/L.
‘b
n2f |
o L

4.5
Frequency
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materials meeting the above requirements. But at infrared

and optical frequencies, the circular birefringence of known

transparent magnetic materials becomes too small to support

a robust frozen mode regim&]. Since our prime interest 'FR‘-...
here is with optics, we will explore the “nonmagnetic” ap- w—

proach proposed if3]. ¥, =
According to[3], the frozen mode regime can occur in / R,
W E

nonmagnetic periodic stacks with special configurations re-
quiring some layers to display appreciable obliqueither
in-plane nor axial anisotropy. On the other hand, at optical
frequencies, all commercially available anisotropic dielec- z=0

trics display substanti_ally weaker anisqtropy, compared to FIG. 3. (Color onling. Light incident on a semi-infinite photo-

Wh,at would be the optimal value. According[t), too weak nic slab. The arrows show the energy fluxes of the incident, re-
anisotropy can push the frozen mOde frequency too close tf"l)ected, and transmitted waves, respectively. The transmitted wave
the nearest band edge, resulting in almost total reflectance @f s a superposition of two Bloch eigenmodes, each of which can

the incident light. The high reflectance of the slab, in turn,pe either propagating or evanescent. Only propagating modes can
Implles Vel‘y low effICIency of conversion of the incident transfer e|ectromagnetic energy in théirection.

light into the slow mode. In this paper we show that in fact

the negative effect of the weak anisotropy on the frozer]ntroduction is impossible. Still, a more general phenomenon

mode regime can be completely overcome by proper dGSigHeferred to as thaxially frozen mode regimean occur. This
of the layered structure. As the result, a robust frozen mod

‘€ection starts with a brief general discussion of the phenom-

regime at optical frequencies can be achieved in IOerIOdI‘énon. Then we turn to the particular case of a periodic stack

stacks incorporating real anisotropic materials such as Y'ihcorporating yttrium vanadate layers. The reason we have

trium vanadate, lithium niobate, and the like, where the di-

. . \ . hosen this particular material is because its optical proper-
electric anisotropy is one or two orders of magnitude short OE P P prop

the “optimal” value. The idea is to ch h i es are very similar to those of other common anisotropic
€ “optimal” value. The idea IS to Cnoose the parameters Of;q qcyrics transparent at optical wavelengths.

the periodic stack so that a stationary inflection point associ-

ated with the frozen mode regime develops at higher photo-

nic bands. For a given frequency range, this requires thicker A. Basic definitions

dielectric layers, which could be an additional practical ad-  consider a monochromatic plane wave obliquely incident
vantage. A side effect of using higher photonic bands is thagn a periodic semi-infinite stack, as shown in Fig. 3. The
the effective bandwidth of the frozen mode regime appearglanez=0 coincides with the slab/vacuum interface.

to be narrower, compared to the case of hypothetical materi- | et W, Wg, and ¥; denote the incident, reflected, and
als with much stronger anisotropy used8] for numerical  transmitted waves, respectively. Due to the boundary condi-
simulations. tions (A12), all three wavesV,, Vg, and ¥+ must be as-

The practicel development of frozen mode devices fromsigned the same pair of tangential componeqtk, of the
such commodity materials could lead to revolutionary ad-corresponding wave vectpd—6]

vances in optical computing, sensing, and information pro-

cessing. When practlcallly re_allzed, such frozep mode struc- (K)x=(Kr)x = (Kpy  (k)y = (Kr)y = (Ky)y, (6)
tures would enable significant advances in all-optical

information storage and processifaych as optical memory Wwhile their axial (norma) componentsk, can be different.
and buffer elements, optical delay liness well as optical Hereinafter, the symbdt, will refer only to the transmitted

I

sensing, lasing, and nonlinear optics. Bloch waves propagating inside the semi-infinite slab
The paper is organized as follows. In the next section, we . o o
discuss in general terms the phenomenon of axially frozen k= (kyky,ky) inside periodic stackatz>0). (7)

mode. The detailed analysis of the mathematical aspects
the phenomenon can be found[Bl. Then, in Sec. I, using - ; .
a specific example of a periodic array incorporating yttriumloUIn _zone), wherel. is the period .Of the layered structure.
vanadate, we demonstrate how a robust frozen mode reginl:_eOr givenk, _ky’ andw, the valu_ekz IS fom_md by s_olv!ng the
at optical frequencies can be achieved in a practical settin me'hafmo""c. Maxwell e_quatlon(sA3) na per|od|c me-
involving weakly anisotropic materials. Finally, in the Ap- um, which will be done in the fOHOV\{'.ng sections. The re-
pendix, we briefly overview the electrodynamics of IosslessSUIf[ can be represented as the axpersion reIeﬂon
layered media, introducing basic notations, definitions, an hich gives the correspondence betweerndk; at fixed

assumptions used in our computations. X By

cijhe valuek, is defined up to a multiple of 2/L (the Bril-

Il. AXIALLY FROZEN MODE REGIME AT OBLIQUE o =o(k,) at fixedk,,k,. (8)

INCIDENCE . . . . .
It can be more convenient to define the axial dispersion re-

According to[2,3], in nonmagnetic periodic stacks, the lation as the correspondence betweeandk, at fixed direc-
simplest version of the frozen mode regime described in théion i of incident light propagation,
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A B The transmitted electromagnetic field; inside the peri-
<o) sl b ., odic layered medium is not a single Bloch mode, but it is a
¥ 1 1 7 o / ; superposition of two Bloch modes with different polariza-
i Ml v B tions and different values dk,. Of course, the tangential
/ 7 o components,,k, are the same for either transmitted Bloch
z I 7 7 ’ mode and the incident wave, as stated by ®g. Generally,
AV /7 /f’ there are three possibiliti€see the details ih3]).
¥ ;/ 5 M A (1) Both Bloch components of the transmitted wa¥e
ol b “ / are propagating modes, which means that the corresponding
4 values ofk, are real. For example, ai< w, and w> wy, in
i Fig. 6 we have two Bloch modes propagating inside the slab

with two different group velocities,> 0 (double refraction
FIG. 4. (Color online. Periodic array of anisotropic dielectric Note that propagating modes with<<0, as well as evanes-
layers(A) separated by gaf®). The anisotropy axis of the dielec- cent modes with Irfk,) <0, do not contribute to the trans-
tric material (the tetragonal axis, in the case of yttrium vanaglate mitted waveW inside the semi-infinite stack in Fig. 3.

makes an oblique angle with thedirection, normal to the layers. (2) Both Bloch components o¥'; are evanescent, which
The stack parameters used in our numerical simulations are speq'mpnes that the corresponding valueskpfare complex with
fied in formulas(30) and (31). Im(k,)>0. In particular, this is the case if the frequeney
falls into a photonic band gaffor example, atw> wg in Fig.
w=w(k) at fixedn,,n,, (99 1. Insuch a case, the incident wave is totally reflected back
to space.
where the unit vecton can be expressed in terms of the (3) Of particular interest is the case when one of the
tangential componen{$) of the wave vector Bloch components of the transmitted wa¥e is a propagat-
ing mode (with u,>0), while the other is an evanescent
ne=kdclw, ny=Kclw, n,=V1-(ni+n). (100 mode(with Im(ky)>0)
Examples of the axial dispersion relati(® are presented in V=W, + W, (11
Figs. 5 and 6. Small gaps appearing near the stationary
points of the spectral branches are numerical artifacts. ~ This is the case at the frequency range
16 W< w<wy (12)

\ / in Fig. 6. As the distance from the slab/vacuum inter-
i i i face increases, the evanescent contributioy decays as
- /“ \ exgd-zIm(k,], and the resulting transmitted wa¥é; turns

into a single propagating Bloch eigenmodg,.
Similarly to the casd€4) of a regular frozen mode, the
axially frozen modds associated with thaxial stationary

inflection pointdefined as

d & &
X _02220%220 atw=wp. (13)
A A

Frequancy o

\
/

The regular stationary inflection poif#) is a particular case
of (13). An example of an axial dispersion relation display-
ing such a singularity is shown in Fig. 6. In the vicinity @

in Eq. (13), the electromagnetic field; inside the slab is a

2 superposition(11) of one propagating and one evanescent
Bloch component. As the frequenayapproaches the critical
ol s s s : point (13), both contributions grow sharply, while remaining

nearly equal and opposite in sign near the slab boungry
z=0), as illustrated in Fig. 7.

FIG. 5. (Color onling. The axial dispersion relatioa(k,) of the Due to the destructive interference at the slab boundary,
periodic stack in Fig. 4 at fixed directiaf of light incidence(n,  the resulting electromagnetic field 20 is small enough to
=n,=-0.493 489. The small spectral asymmetry and small branchSatisfy the boundary conditiof12). As the distance from
separation are due to the weak anisotropy of yttrium vanadate. Botfhe slab boundary increases, the evanescent compdngnt
the asymmetry and the branch separation are more prononced @fecays exponentially, while the amplitude of the propagating
upper spectral bands. The wave numkgand the frequencw are ~ componentV, remains constant and large, as shown in Figs.
given in units of 1L andc/L, respectively. 8(b) and &c).

Wave number kz
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FIG. 6. (Color onling. A fragment of the axial
dispersion relatiom(k,) in Fig. 5, which includes
the axial stationary inflection point atwg
=9.164 450 223. Small discontinuities appearing
near stationary points of the spectral branches are
numerical artifacts.

Frequency o

Wave number k;

B. Energy density and energy flux of the axially frozen mode  the electromagnetic fiel#; reduces to its propagating com-
ponentW . In the vicinity of the axial stationary inflection
point (13), the energy densit\,, associated with the axially
frozen mode, diverges, while,— 0. As a result, the vanish-

Let é §R andéT be the energy fluxes of the incident,
reflected, and transmitted waves, respectively. Within the fre

guency rangél12), which includes the critical pointl3), the ingly smallu, in Eq. (14) is offset by a very large value of

transmitted wavely is a superpositiori11) of propa_lgating W,. The theoretical analysis of the next section shows that
and evanescent components. Only the propagating comp(t)ﬁ xial energy fluxS). in Eq. (14), along with the slab
nentW, is responsible for the axial energy fl(sy),. e axial energy fluxSy), g > aong © sa

Th al f 0 b qin t tfransmittancer in Eqg. (A20), remain finite even atv=w,
€ axial energy fiux can aiso be eXpressed In terms O pare the axial component of the group velocity vanishes,
the axial component, of the propagating mode group ve-

locity and the energy density, associated withV, (§T)Z> 0 ifu,=0. (15)

(éT)z:WOUZOC |‘1’pr|2Uz- (14) The energy conservation consideration allows us to find
the asymptotic frequency dependence of the amplit&q)giz
The quantityW, in Eq. (14) can be interpreted as the elec- of the axially frozen mode in the vicinity of the critical point
tromagnetic energy density far from the slab interface, wher¢13). Indeed, in the vicinity ofw,, the axial dispersion rela-

20 20 3 : -
=1 2
I : c)
N 15 15 :
® 2 : |
2 10} 10} 3
; [ w
W, -
0 -
[:H]
i
0 0
8.16 8.17 9.16 9.17 9.16 917
Frequency w Frequency w Frequency w

FIG. 7. (Color online. Destructive interference of the propagating and evanescent contributions to the resultingfigidhe slab/
vacuum interface under the frozen mode regir(raa&:amplitude|\I'pr(0)|2 of the propagating componert) amplitude |¥,(0)? of the
evanescent component, afg) resulting field amplitudéW(0)|°. Frequencyw is expressed in units af/L. The incident light has unit
amplitude and TE polarization.
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FIG. 8. (Color onling. The amplituddW¥(2)|? of the resulting field as a function of the distarméom the slab boundary@) w= wp,
n=n,, which is the exact point of the frozen mode regini®; w # wy, N=n,, the frequencyw deviates fromwy by 10°3c/L; (€) w=wq,
n# ng, the directionn of light incidence deviates fromg in Eq. (33) by 104 The distance is given in units ofL. The incident light has
unit amplitude and TE polarization.

tion can be approximated by a cubic parabola zen mode, associated with the regular stationary inflection
point (4).
©=wp= éwé;'(kz— ko), wf = (%) . (e
z/ ko C. Physical conditions for the axially frozen mode regime
The z component of the group velocity is in layered media
dw 1 62/3 The physical conditions under which a nhonmagnetic lay-
u,= * ~ Ewg’(kz— ko)? = 7(wg')1/3(w - )2, ered structure can support tiiaxial) frozen mode regime

can be grouped in two categories. The first one comprises
(17)  several symmetry restrictions. The second category includes
some basic qualitative recommendations which would ensure
the robustness of the frozen mode regime, provided that the
symmetry conditions for the regime are met. In what follows
we briefly reiterate those conditions and then show how they

Equation (17) together with Eq.(14) yield the following
asymptotic expression for the energy densMly associated
with the frozen mode:

2 - _ - apply to periodic stacks incorporating some real dielectric
~ m=1/3¢ = _ 2/3 .
Wo 62/3(Sr)z(wo) (= wo)™, (18) materials.
or, equivalently, 1. Symmetry conditions
2 - .
W~ —— 1) =13( g — )23, 19 There are two fundamental necessary conditions for the
0 62’3T($)Z(w°) (@~ wo) (19 frozen mode regime. The first one is that the Bloch disper-

h é is the fixed .  the incident q sion relationw(K) in the periodic layered medium must dis-
wheres IS the Tixed energy Tiux ot the incident wave and |5y the so-calledixial spectral asymmetr
is the transmittance coefficient defined in E#§20). Re- Py P 4 y

markably, the transmittance of the semi-infinite slab re- w(Ky, Ky, k) # oKy, Ky, —Ky). (20
mains finite in the vicinity of the frozen mode frequengy,

as seen in Figs. 9 and 10. This implies that the electroma
netic energy density\y associated with the frozen mode, as
well as its amplitud¢¥,, |2, diverge aso— wy. In Figs. 9 and

10 such a behavior is illustrated for two different incident Th q dition is that for the ai di
light polarizations. e second necessary condition is that for the given di-

In reality, under the axial frozen mode regime, the field"€ction k of wave propagation, the Bloch eigenmodéy
amplitude inside the slab is limited by various physical fac-With different polarizations must have the same symmetry. In
tors mentioned earlier in this paper. Still, with all these limi- the case of oblique propagation in periodic layered media,

. z N the latter condition implies that for the givdg the Bloch
tations in place, the normal energy flU®;), remains finite . .
'ons in p gy 6y, ns 1l eigenmodes are neither TE nor TM,

and comparable with that of the incident wave. The latter

As shown in[3], this condition is necessary for the existence
of the axial stationary inflection poiiL3) in the electromag-
netic dispersion relation of an arbitrary periodic layered me-
dium.

implies that a substantial portion of the incident wave is W is neither TE nor TM. (21)
converted into the axially frozen mode with drastically en- N _ _ o _
hanced amplitude and nearly zero axial compongrmf the The condition(20) imposes certain restrictions @ the

group velocity. In many respects, the phenomenon of axiaPoint symmetry groups of the periodic layered array and
frozen mode is similar to its particular case, the regular froii) the directiork of the transmitted wave propagation inside
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a®
e sanae®

Transmitted wave amplitude
5]
1

0 [ | | 1
g 9.05 9.1 815 9.2 9.25 9.3

Frequency w

Transmittance

| | 1 1
8 8.05 9.1 915 8.2 9.25 9.3
Frequency w

0 [ | | 1

FIG. 9. (Color onling. At the top: the solidred) line shows the amplitudk—}l'pr|2 of the propagating Bloch component of the transmitted
wave ¥ from Eq.(11). The dottedgreen line shows the amplitudgP |2 of the evanescent component. Both contribution®{odiverge
at the frozen mode frequenay,. At z>L, the evanescent component decays |ah,g|2 (the solid ling represents the resulting amplitude
| W+ of the transmitted wave. By contrast,@& w, andw> w,, the transmitted wavi¥; is a superposition of two propagating components
(double refractiop At the bottom: the slab transmittaneevs frequencyw. At w=wyq, the transmittance remains finite. The characteristic
frequenciesn,, wg, andwy, are explained in Fig. 6. The incident wave has TE polarization and unit amplitude. Frequéngyen in units
of c/L.

the layered medium. The conditid21) may impose some The condition(20) also imposes a restriction on the direc-
additional restriction on the direction &f tion of wave propagation. Specifically, the Bloch wave vec-
The restriction on the symmetry of the periodic stack fol-tor k must be oblique to the stack layers, which meanskhat
lowing from the requirement20) of axial spectral asymme- is neither parallel nor perpendicular to thelirection,
try is
m,¢ Gand 2 ¢ G, (22

wherem, is the mirror plane parallel to the layers angdi®

the twofold rotation about the axis. An immediate conse-

quence of the criterioi22) is that at least one of the alter- The latter condition implies that the frozen mode regime

nating layers of the periodic stack must be an anisotropicannot occur at normal incidence, regardless of the periodic

dielectric material with nonzere,, and/ore,,, where thez  stack geometry and composition. While the conditi@3)

direction is normal to the layers, implies that at least one of the alternating layers must be
cut at an oblique angle relative to the principal axes of its

ex, 7 0 and/orey, # 0. (23) permittivity tegsor. Ifgeither of the abovg twopconditions is
Otherwise, the operation, ®ill be present in the symmetry not satisfied, the dispersion relatian(k) will be axially
group G of the periodic stack. symmetric

k« # 0 and/ork, # 0.
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Transmitied wave amphiude
L]

] 2.05 a1 815 8.2 .25 2.3

g ey FIG. 10. (Color online. The same as in Fig.

9, but the incident wave polarization is now TH.

Transmittance

L] mﬂ {l}b

0 - | 1 'l 1 ' L
] 5.05 .1 8.15 6.z .25 8.3
Frequancy o

w(Ky, Ky, Ky) = o(ky, Ky, — k), (24)  regime. For example, in the practically important case of
_ s ] ) ) _extremely small anisotropy, the two transmitted Bloch waves
and the frozen mode regime. is incompatible with the symmetry conditiof21) for the

If all the above necessary conditions are met, then thérozen mode regime.
(axial) frozen mode regime is, at least, not forbidden by sym-  (2) The dielectric contrast of the adjacent layérsind B
metry. More details on the symmetry aspects of the frozeshould be significant, but not extreme. The ratjgng any-
mode regime can be found i8], Sec. Il, and2], Secs. | and where between 1.5 and 20 would be appropriate. In addition,
Il. the dielectric contrast between the layers should match the
ratio (25) in the anisotropic layers: weaker anisotropy would
require weaker dielectric contrast between the layers.
In practice, as soon as the symmetry conditions are met (3) Typical layer thickness should be of the ordend#n,

one can almost certainly achieve tkaxia) frozen mode WhereA=2m/w is the light wavelength in vacuum amdis
. . o : the corresponding refractive index. In reality, the acceptable
regime at any desirable frequenay within a certain fre-

The f is determined b thIayer thickness can differ frorn/4n by several times either
guency range. 1he frequency range Is determined by ﬁ/ay. But too thick layers would push the stationary inflection
layer thicknesses and the dielectric materials used, while

e . ﬁoint to high order frequency bands, while too thin layers
specific value ofw within the range can be selected by the ,y1q exclude the possibility of the frozen mode regime at
directionn of the light incidence. The problem is that unless e prescribed frequency range.

the physical parameters of the stack layers lie within a cer- The higgest challenge at optical frequencies poses the first
tain range, the effects associated with the frozen mode rexondition, because most of the commercially available opti-
gime can be insignificant or even practically undetectablecal anisotropic crystals have the ratim/n of only about
The basic guiding principle in choosing appropriate layer0.1. According to[3], this would push the axial stationary
materials is “moderation.” As soon as the “moderation” prin-inflection point(13) very close to the photonic band edge
ciple is observed, one can almost certainly achieve the frozeand make the photonic crystal almost 100% reflective. This
mode regime at prescribed frequency by choosing the righindeed would be the case if we tried to realize the frozen
direction of light incidence. Specifically, those “moderation” mode regime at the lowest frequency band. But, in the next

2. Additional physical requirements

conditions include the following.
(1) It is desirable that the ratio

An
n

(25)

section we show that one can successfully solve this problem
by moving to a higher frequency band. So a robust axially
frozen mode regime with almost complete conversion of the
incident light into the frozen mode can be achieved with
commercially available anisotropic dielectric materials dis-

playing a birefringence rati@25) smaller by one on two
of the birefringence and the refractive index of the materialorders of magnitude, compared to the optimal value used in
of the anisotropic layers lies somewhere between 2 and 10. [8] for numerical simulations. The drawback though is that
the anisotropy is extremely strong or too weak, the Blochusing higher photonic frequency bands narrows the band-
waves with different polarizations become virtually sepa-width of the frozen mode regime by roughly an order of
rated, which excludes the possibility of a robust frozen modanagnitude.
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lll. PERIODIC STACK INCORPORATING YTTRIUM gime are satisfied only if the directiom of the light inci-
VANADATE LAYERS dence lies in neither the-z nor they-z plane,
The simplest nonmagnetic periodic stack satisfying the n,# 0 andny, # 0. (32

symmetry condition$22) and(23) and, therefore, capable of
supporting the axial frozen mode regime, is shown in Fig. 4. A Electromagnetic properties in the vicinity of axial frozen
It is composed of anisotropié layers separated by empty mode regime

gaps. The anisotropic dielectric layers must display nonzero
components,, and/ore,,. The simplest choice for the cor-
responding permittivity tensor is

In Fig. 5 we presented the typical axial dispersion relation
w(k,) of the periodic stack in Fig. 4 at fixed directighof
light incidence. In Fig. 5 we chose

ny=n,=n, whereny=-0.493 489, (33
because this particular direction of light incidence produces

the axially frozen mode regime at certain frequensay,

where thez axis coincides with the normal to the layers. ~ shown in Fig. 6. Due to the relatively small anisotropy of
Yttrium vanadate is a tetragonal dielectric with the per-yttrium vanadate, the axial dispersion relation in Fig. 5 dis-

gxx 0 &y
ea=| 0 &, O (26)

&z 0 &5

mittivity tensor&yy at A=1550 nm[7] plays rather weak asymmetey(k,) # w(-k,), which makes it
virtually impossible to develop a stationary inflection point
en 00 462 0 0 at the lowest spectral branches. As we go to upper photonic
eyw=| 0 &» 0 |=[ O 462 O (27 bands, the situation improves. In Fig. 6 we present the en-
0 0 &g 0 0 3.78 larged fragment of the axial dispersion relation in Fig. 5.

This fragment covers the boundary region between the forth
where the Cartesian axig is chosen parallel to the crystal- and the fifth bands. At frequency
lographic axisC,. In order to achieve a nonzeeq, compo-
nent one has to rotate the ten$ar) about they axis by an wo = 9.164 450 2268/L (34
angle ¢ different from 0 andu/2 [8]. The result of the rota- one of the spectral branches develops axial stationary inflec-
tion Is tion point (13), associated with the possibility of the axial
frozen mode regime.
R Our numerical analysis based on the transfer matrix ap-
ep= 0 €22 0 . proach(the computational details are presented in the Ap-
(11— £39C0SHSING O £33C08 O+ g4, SirF 6 pendix indeed shows a very robu&ixial) frozen mode re-
(28) gime in this setting, in spite of the fact that the dielectric
anisotropy of yttrium vanadate is more than an order of mag-
For numerical simulations we can choose, for instance,  nitude short of the optimal value. The drawback though is
that the frequency bandwidth of the effect is roughly an order

£11C0 O+e538iI 0 0 (81— &39)C0SHSING

o= mi4. (29) of magnitude narrower, compared to what could be achieved
In this case, Eq(28) together with(27) yields with hypothetical materials displaying much stronger aniso-
tropy at optical frequencies.
420 0 442 Let us start with the results presented in Figs. 9 and 10.
ea=| 0 462 O (30) The bottom plots in both figures display the frequency de-
442 0 4.20 pendence of the stack transmittancéor two different po-
larizations of incident light. Clearly, in the vicinity of the
which is compatible with the required for(6). frozen mode frequency,, the transmittance remains signifi-

Letd, anddg denote the thickness of thkelayers and the cant, which implies that a significant portion of the incident
thickness of the gaps between them, respectively. For ouadiation is converted into the frozen mode. The top plots in
numerical simulations we can choose Figs. 9 and 10 display the amplitudes of the two Bloch com-

de=da=L/2 (31) ponents of the transmitted WavET_. The solid and dotted
ATTB ' lines correspond to the propagating and evanescent Bloch
wherelL is the period of the layered array in Fig. 4. components, respectively. In the vicinity of the frozen mode

Let us reiterate that the parameté?9) and(31) are cho- frequency(at w,< w<wy), there is one propagating compo-
sen at random. In practice, we can always adjust them so thaent (W) and one evanescent componéHt,,), each of
the stack suits specific practical requirements. The structuralhich diverges asv— w, in accordance with Eq19). At
period L should be chosen so that the frozen mode regime» < w, and w> wy, the transmitted wavd'; is a superposi-
occurs within a prescribed frequency range. Then, the diredion of two propagating components with different group ve-
tion of light incidence can be adjusted so that the axial frozerocities, which constitutes the phenomenon of double refrac-
mode regime occurs exactly at a prescribed frequescy tion. The characteristic frequencies in Figs. 9 and 10 are

Symmetry arguments similar to those presented3h explained in Fig. 6.
show that in the case of the periodic array in Fig. 4, the Figure 7 shows the frequency dependence of the resulting
necessary condition®2) and (21) for the frozen mode re- field amplitude|W(0)|? at the slab boundary, along with the
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amplitudes of its propagating and evanescent componentA9550-04-1-0359. J.B. also wish to thank the Defense Ad-
|¥,(0)]? and|¥,(0)| Although each of the two Bloch con- vanced Research Projects Agen®ARPA) for support un-
tributions to ¥(0) diverges asw— w,, their superposition der Grant No. N66001-03-1-8900 through SPAWAR.

V¥+(0) remains finite, to meet the boundary conditidA4.2)

at z=0. As we move further away from the slab boundary,
the evanescent component dies out, while the propagating
mode W, (z) remains constant and large. As a result, the |n this appendix we briefly discuss the standard procedure
destructive interference of,(z) andW¥,(2) is removed, and e use to do the electrodynamics of stratified media incor-
the resulting field amplitudé¥+(z)|*> grows and approaches porating anisotropic layers. For more details, see, for ex-
the value|W /. This scenario is illustrated in Figs(t8 and ~ ample,[3,9-11 and references therein.

8(c). If the frequencyw of the incident wave and its direction

APPENDIX: SCATTERING PROBLEM FOR ANISOTROPIC
SEMI-INFINITE STACK

of propagatiom exactly correspond to the critical valueg 1. Time-harmonic Maxwell equations in periodic layered
andny, then the electromagnetic field(z) inside the semi- media
infinite stack is described by a linearly diverging non-Bloch  Qur consideration is based on time-harmonic Maxwell
Floguet eigenmode equations

|‘I’T|2 «Z,

V X E(xY,2) =i 2B(X,Y,2)
as shown in Fig. &). R4 c oY
By way of example, let us present the actual geometrical

parameters of the stack supporting the axially frozen mode o
regime for the case of infrared light witte 1550 nm and the V XH(xy.2)=- 'ED(X% 2) (A1)
direction of incidencg33). The expressiori34) for the fro-
zen mode frequency yields with linear constitutive relations
d=1/2=1130.4 nm. D(x,y,2) = &(2E(x,y,2), B(xY,2) = i(2H(xy,2).
(A2)

In practice, we do not have to adjust the layer thicknesses in

order to achieve the frozen mode regime at a prescribegh |ayered media, the tensoésand iz in Eq. (A2) depend on

wavelength. Instead, we can tune the system into the axially single Cartesian coordinatePlugging Eq(A2) into (A1)
frozen mode regime by adjusting the directianof light  yje|ds

incidence.
LW .
IV. CONCLUSIONS V XE(Xy,2) = |EM(Z)H(X,V,Z),

The most important conclusion of our analysis is that a
robust frozen mode regime can be realized in periodic stacks .
incorporating generic anisotropic dielectric materials, such as V XHXxy.2)=- 'ES(Z)E(X’V’ 2). (A3)
YVO,, LiNbO3, and CaCQ, where the anisotropy of the
refractive index is well below the optimal value. At optical Solutions for Eq.(A3) are sought in the following form:
frequencies, periodic dielectric arrays can reduce the speed , - A -
of pulse propagation by roughly three orders of magnitude.  E(xY,2) =€ *YE(z), H(xy,2) = WH(2),
This is not a fundamental physical limitation, but rather a (A4)
technological restriction related to the difficulty of building = . _ _
flawless periodic arrays at nanoscales. Due to almost conf¥hich is a standard choice for the scattering problem of a
plete and lossless conversion of the incident light into the?l@ne electromagnetic wave incident on a plane-parallel
slow frozen mode, such a slowdown implies the enhancestrat'f'?d slab. Indeed, in sut_:h a case, due to the boundary
ment of the electromagnetic energy density in the slow mod&onditions(A11), the tangential componentk,,k,) of the
by the same three orders of magnitude. This can be veryave vector are the same for the incident, reflected, and
Relatively weak anisotropy of generic dielectric materialsOne o separate the tangential field component&,, H,, H,
imposes more severe bandwidth limitations on the frozedto & closed system of four linear differential equations,

mode regime, but this can only affect the cases involving E2)

ultrashort light pulses. Otherwise, all the major manifesta- X

tions of the frozen mpde regime, such as the dramatic in- 3V (2) :igM(z)\If(z) whereW(z) = Ey(2)

crease of the frozen light amplitude compared to that of the o H,(2)

incident light, remain in place. H,(2)
ACKNOWLEDGMENTS (A5)

The effort of A.F. and I.V. was supported by the U.S. Air The 4X 4 matrixM(2) is referred to as the Maxwell operator.
Force Office of Scientific Research under Grant No.The reduced Maxwell equatiof5) for the four tangential
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field componentd’(z) should be complemented with the fol- Ery Eryx
lowing expressions for the normal components of the fields: E ’ =
| =Ry |2 Y
* * - Vi= = _ -
E,= (= nyHy + nH,— &, Ex— &) e 7, R71 Hry Erahyn, "+ Ery(1 -nd)n;?
Hry — Erx(1 —nd)n;" = Egynnyn;*

H,= (any - r]yEx - :u“:(zHX - M;zHy)M;zll (A6)
describe the incident and reflected waves, respectively.
ny, andn, are the Cartesian components of the unit vector

ny=ckfw, ny=ck/w. (A7) (10).
Knowing the eigenmode®\9) inside the slab and using

: o the boundary conditiongA12) we can express the amplitude

cumbersome; its explicit form can be found[B]. The ma-  ,nq composition of the transmitted wadé; and reflected

trix elements ofM(2) depend on the following parameters: \ 3y p,, in terms of the amplitude and polarization of the
the frequencyw, the directionn of light incidence, and the jncident waveW,. This gives us the electromagnetic field

where

The expression for the Maxwell operatdt(z) is very

material tensor$(z) and iu(2). distribution W(2) inside the layered medium, as well as the
In a periodic layered medium transmittance and reflectance coefficients of the semi-infinite
M(z+L)=M(2), (A8)  slab as functions of the incident wave polarization, the direc-

tion N of incidence, and the frequenay.

wherelL is the stack period. For any givéq, k,, andw, the
system (A5) of four ordinary linear differential equations .

. L - - 3. Energy flux, reflectance, transmittance
with periodic coefficients has four Bloch solutions,

The real-valued Poynting vector is defined by

W (z+L) ='W, (2),1=1,2,3,4, (A9)
wherek;, i=1,2,3,4,correspond to four solutions fd«, for S(x,y,2) = 1 RAE (x,y,2 X H(x,y,2)].  (Al4)
givenk,, k,, and w, 2

K Ky @ < {Kyz Koz Kaz Kagt = {Kip Ko KapKasb.  (A10)  Plugging the representatidid) for E(x,y,2) andH(x,y,2)

Realk, in Eq.(A10) relate to propagating Bloch eigenmodes, In Eq. (AL4) yields

while complexk, relate to the evanescent modes. In the case . - 1 - -

of propagating eigenmodes, the correspondence betkgeen Sxy,2=92) = > REE (2) X H(2)], (A15)

and w for fixed k,,k, is referred to as the axial dispersion

relation, the concise form of which is given by E8) or (9).  implying that none of the three Cartesian components of the

A B g et o£110 deny 5 depends on th angental coorinte
malism, the detailed description of which can be found in th andy. In addition, the energy conservation argument implies

O . Shat the axial componer§, of the energy flux does not de-
extensive literature on the subjdsee, for exampld3,9-11 pend on the coordinateeither,
and references thergin
2. Boundary COnditiOnS SZ(vavz) = SZ: ConSt! S((X!y! Z) = S((z)v %(lel Z) = %(Z) .

The boundary conditions at the slab/vacuum interface re- (A16)

duce to the continuity requirement for the tangential fieldtpig applies only to the case of a plane monochromatic wave
components at=0, incident on a lossless layered medium. The explicit expres-

[E,(x,y,0)], +[Er(X%,Y,0], =[E1(x,y,0)],, sion for thez component of the energy flAL5) is

[Hi(xy, 0], +[Hr(XY,0], =[H(xy,0)],, (All) S, = %[E;Hy— E Hx+ EHy — EjH . (A17)

where the indice$, R, and T denote the incident, reflected, _ S
and transmitted waves, respectively. Using representation Let us turn to the scattering problem for a semi-infinite

(A4), we can recastAll) in a compact form slab. Leté, §R and§T be the Poynting vectors of the inci-
_ dent, reflected, and transmitted waves, respectively. Energy
+ = e , .
¥1(0) + ¥R(0) = ¥(0) (A12) conservation imposes the following relation between the nor-
where mal components of these three vectors:
E E > > >
E"X E' x (SD2=(S).* (S (A18)
— Ly | — Ly
’\Ij - - — — 1 i i -
[ H, _ El,xnxnynzl_ E(1 —n)z()nzl Since the stack is presumably composed_ of lossless materi
o1 1 als, thez component of the energy flux is independent of
Hiy E (1 -nj)n;” +E ynanyn, coordinates both inside and outside the stack. In particular,

(A13) inside the slab we have

036612-11



BALLATO et al. PHYSICAL REVIEW E 71, 036612(2005

(Sp),=const. aiz>0. (A19) _(Sp), (R,
T=——, =———=1-7. (A20)

The transmittancér) and the reflectancé) of a lossless (S), (S),
semi-infinite slab are defined as
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