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We consider a plane electromagnetic wave incident on a periodic stack of dielectric layers. One of the
alternating layers has an anisotropic refractive index with an oblique orientation of the principal axis relative
to the normal to the layers. It was shown recently that an obliquely incident light, upon entering such a periodic
stack, can be converted into an abnormalaxially frozen modewith drastically enhanced amplitude and zero
normal component of the group velocity. The stack reflectivity at this point can be very low, implying nearly
total conversion of the incident light into the frozen mode with huge energy density, compared to that of the
incident light. Supposedly, the frozen mode regime requires strong birefringence in the anisotropic layers—by
an order of magnitude stronger than that available in common anisotropic dielectric materials. In this paper we
show how to overcome the above problem by exploiting higher frequency bands of the photonic spectrum. We
prove that a robust frozen mode regime at optical wavelengths can be realized in stacks composed of common
anisotropic materials, such as YVO4, LiNbO3, CaCO3, and the like.
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I. INTRODUCTION

In photonic crystals, the speed of light is defined as the
wave group velocityuW,

uW = ]v/]kW , s1d

wherekW is the Bloch wave vector andv=vskWd is the corre-
sponding frequency. At certain frequencies, the dispersion
relationvskWd of a photonic crystal develops stationary points

]v/]kW = 0, s2d

in the vicinity of which the group velocity vanishes. Zero
group velocity usually implies that the corresponding Bloch
eigenmode does not transfer electromagnetic energy. Indeed,

with certain reservations, the energy fluxSW of a Bloch mode
is

SW = WuW s3d

where W is the electromagnetic energy density, associated
with this mode. IfW is limited, then the group velocityuW and

the energy fluxSW vanish simultaneously at any stationary
point s2d of the dispersion relation. Such modes are com-
monly referred to as slow modes, or slow light. Examples of
different stationary pointss2d are shown in Fig. 1, where
each of the respective frequenciesva, vb, vg, and v0 is
associated with slow light.

A common problem with slow modes is that most of them
cannot be excited in semi-infinite photonic crystals by inci-
dent light. Indeed, consider a plane monochromatic wave

incident on a semi-infinite photonic crystal with the electro-
magnetic dispersion relation shown in Fig. 1. If the fre-
quencyv is close to the band edge frequencyvg in Fig. 1,
then the incident wave will be totally reflected back into
space, as seen in Fig. 2.

In another case, where the incident wave frequency is
close to the characteristic valueva or vb in Fig. 1, some
portion of the incident wave will be transmitted in the pho-
tonic crystal, but none in the form of the slow mode corre-
sponding to the respective stationary point. This means, for
example, that at the frequencyva, the transmitted light is a
Bloch wave with finite group velocity and wave number dif-
ferent from that corresponding to the pointa in Fig. 1.

Let us turn now to the stationary inflection point 0 of the
dispersion relation in Fig. 1, where both the first and the
second derivatives of the frequencyv with respect tok van-
ish, while the third derivative is finite,

]v

]k
= 0,

]2v

]k2 = 0,
]3v

]k3 Þ 0 at v = v0 andk = k0.

s4d

The frequencyv0 of stationary inflection point is associated
with the so-calledfrozen mode regimef1–3g. In such a case,
the incident plane wave can be transmitted into the photonic
crystal with little reflection, as seen in Fig. 2. Having entered
the photonic slab, the light is 100% converted into the slow
mode with infinitesimal group velocity and drastically en-
hanced amplitude. Under the frozen mode regime, vanish-
ingly small group velocityuW in Eq. s3d is offset by a huge
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value of the energy densityW. As a result, the energy fluxs3d
associated with the frozen mode remains finite and compa-
rable with that of the incident wave. In the vicinity of the
frozen mode frequencyv0, the electromagnetic energy den-
sity W associated with the slowsfrozend mode displays a
resonancelike behavior,

W<
2tSI

62/3 sv0-d−1/3sv − v0d−2/3, s5d

whereSI is the fixed energy flux of the incident wave,t is the
portion of the incident light transmitted into the semi-infinite
photonic crystal, and

v0- = S ]3v

]k3 D
k=k0

.

Remarkably, the transmittancet at v<v0 remains finite and
may even be close to unity, as shown in Fig. 2. The latter
implies that a significant portion of the incident light is con-
verted into the frozen mode with nearly zero group velocity
and huge amplitude, compared to that of the incident wave.
In reality, the electromagnetic energy densityW of the frozen
mode will be limited by such factors as absorption, nonlinear
effects, imperfection of the periodic dielectric array, devia-
tion of the incident radiation from a perfect plane monochro-
matic wave, finiteness of the photonic slab dimensions, etc.
Still, with all these limitations in place, the frozen mode
regime can be very attractive for various practical applica-
tions.

From now on we restrict ourselves to the case of lossless
periodic layered mediasperiodic stacksd, which can be
viewed as one-dimensional photonic crystals. According to
f2g, at normal incidence, the frozen mode regime in a peri-
odic stack can occur only if some of the layers display suf-
ficiently strong circular birefringencesFaraday rotationd. In
addition, each unit cell of the periodic layered array must
contain at least two layers with significant and misaligned
in-plane anisotropy. If the above conditions are not met, the
electromagnetic dispersion relation of the periodic stack can-
not develop a stationary inflection points4d and, therefore,
cannot support the frozen mode regime at normal incidence.
In the microwave frequency range, one can find a number of

FIG. 1. sColor onlined. An example of electromagnetic disper-
sion relationvskd with various stationary points:sid extreme points
a and b of the respective spectral branches,sii d a photonic band
edgeg, siii d a stationary inflection point 0. Each stationary point is
associated with slow light. The wave numberk and the frequencyv
are given in units of 1/L and c/L, respectively.L is the primitive
translation of the periodic array.

FIG. 2. sColor onlined. Transmittancet as a
function of incident light frequencyv for the
semi-infinite photonic slab with the dispersion re-
lation presented in Fig. 1. The characteristic fre-
quenciesva, vb, v0, andvg are associated with
the respective stationary points in Fig. 1. Atv
ùvg swithin the photonic band gapd the incident
light is totally reflected by the slab. Frequencyv
is expressed in units ofc/L.
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materials meeting the above requirements. But at infrared
and optical frequencies, the circular birefringence of known
transparent magnetic materials becomes too small to support
a robust frozen mode regimef2g. Since our prime interest
here is with optics, we will explore the “nonmagnetic” ap-
proach proposed inf3g.

According to f3g, the frozen mode regime can occur in
nonmagnetic periodic stacks with special configurations re-
quiring some layers to display appreciable obliquesneither
in-plane nor axiald anisotropy. On the other hand, at optical
frequencies, all commercially available anisotropic dielec-
trics display substantially weaker anisotropy, compared to
what would be the optimal value. According tof3g, too weak
anisotropy can push the frozen mode frequency too close to
the nearest band edge, resulting in almost total reflectance of
the incident light. The high reflectance of the slab, in turn,
implies very low efficiency of conversion of the incident
light into the slow mode. In this paper we show that in fact
the negative effect of the weak anisotropy on the frozen
mode regime can be completely overcome by proper design
of the layered structure. As the result, a robust frozen mode
regime at optical frequencies can be achieved in periodic
stacks incorporating real anisotropic materials such as yt-
trium vanadate, lithium niobate, and the like, where the di-
electric anisotropy is one or two orders of magnitude short of
the “optimal” value. The idea is to choose the parameters of
the periodic stack so that a stationary inflection point associ-
ated with the frozen mode regime develops at higher photo-
nic bands. For a given frequency range, this requires thicker
dielectric layers, which could be an additional practical ad-
vantage. A side effect of using higher photonic bands is that
the effective bandwidth of the frozen mode regime appears
to be narrower, compared to the case of hypothetical materi-
als with much stronger anisotropy used inf3g for numerical
simulations.

The practical development of frozen mode devices from
such commodity materials could lead to revolutionary ad-
vances in optical computing, sensing, and information pro-
cessing. When practically realized, such frozen mode struc-
tures would enable significant advances in all-optical
information storage and processingssuch as optical memory
and buffer elements, optical delay linesd as well as optical
sensing, lasing, and nonlinear optics.

The paper is organized as follows. In the next section, we
discuss in general terms the phenomenon of axially frozen
mode. The detailed analysis of the mathematical aspects of
the phenomenon can be found inf3g. Then, in Sec. III, using
a specific example of a periodic array incorporating yttrium
vanadate, we demonstrate how a robust frozen mode regime
at optical frequencies can be achieved in a practical setting
involving weakly anisotropic materials. Finally, in the Ap-
pendix, we briefly overview the electrodynamics of lossless
layered media, introducing basic notations, definitions, and
assumptions used in our computations.

II. AXIALLY FROZEN MODE REGIME AT OBLIQUE
INCIDENCE

According to f2,3g, in nonmagnetic periodic stacks, the
simplest version of the frozen mode regime described in the

Introduction is impossible. Still, a more general phenomenon
referred to as theaxially frozen mode regimecan occur. This
section starts with a brief general discussion of the phenom-
enon. Then we turn to the particular case of a periodic stack
incorporating yttrium vanadate layers. The reason we have
chosen this particular material is because its optical proper-
ties are very similar to those of other common anisotropic
dielectrics transparent at optical wavelengths.

A. Basic definitions

Consider a monochromatic plane wave obliquely incident
on a periodic semi-infinite stack, as shown in Fig. 3. The
planez=0 coincides with the slab/vacuum interface.

Let CI, CR, and CT denote the incident, reflected, and
transmitted waves, respectively. Due to the boundary condi-
tions sA12d, all three wavesCI, CR, and CT must be as-
signed the same pair of tangential componentskx,ky of the
corresponding wave vectorf4–6g

skWIdx = skWRdx = skWTdx, skWIdy = skWRdy = skWTdy, s6d

while their axial snormald componentskz can be different.
Hereinafter, the symbolkz will refer only to the transmitted
Bloch waves propagating inside the semi-infinite slab

kW = skx,ky,kzd inside periodic stacksat z. 0d. s7d

The valuekz is defined up to a multiple of 2p /L sthe Bril-
louin zoned, whereL is the period of the layered structure.
For givenkx, ky, andv, the valuekz is found by solving the
time-harmonic Maxwell equationssA3d in a periodic me-
dium, which will be done in the following sections. The re-
sult can be represented as the axialdispersion relation,
which gives the correspondence betweenv and kz at fixed
kx,ky,

v = vskzd at fixed kx,ky. s8d

It can be more convenient to define the axial dispersion re-
lation as the correspondence betweenv andkz at fixed direc-
tion nW of incident light propagation,

FIG. 3. sColor onlined. Light incident on a semi-infinite photo-
nic slab. The arrows show the energy fluxes of the incident, re-
flected, and transmitted waves, respectively. The transmitted wave
CT is a superposition of two Bloch eigenmodes, each of which can
be either propagating or evanescent. Only propagating modes can
transfer electromagnetic energy in thez direction.
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v = vskzd at fixed nx,ny, s9d

where the unit vectornW can be expressed in terms of the
tangential componentss6d of the wave vector

nx = kxc/v, ny = kyc/v, nz = Î1 − snx
2 + ny

2d. s10d

Examples of the axial dispersion relations9d are presented in
Figs. 5 and 6. Small gaps appearing near the stationary
points of the spectral branches are numerical artifacts.

The transmitted electromagnetic fieldCT inside the peri-
odic layered medium is not a single Bloch mode, but it is a
superposition of two Bloch modes with different polariza-
tions and different values ofkz. Of course, the tangential
componentskx,ky are the same for either transmitted Bloch
mode and the incident wave, as stated by Eq.s6d. Generally,
there are three possibilitiesssee the details inf3gd.

s1d Both Bloch components of the transmitted waveCT
are propagating modes, which means that the corresponding
values ofkz are real. For example, atv,va and v.vb in
Fig. 6 we have two Bloch modes propagating inside the slab
with two different group velocitiesuz.0 sdouble refractiond.
Note that propagating modes withuz,0, as well as evanes-
cent modes with Imskzd,0, do not contribute to the trans-
mitted waveCT inside the semi-infinite stack in Fig. 3.

s2d Both Bloch components ofCT are evanescent, which
implies that the corresponding values ofkz are complex with
Imskzd.0. In particular, this is the case if the frequencyv
falls into a photonic band gapsfor example, atv.vg in Fig.
1d. In such a case, the incident wave is totally reflected back
to space.

s3d Of particular interest is the case when one of the
Bloch components of the transmitted waveCT is a propagat-
ing mode swith uz.0d, while the other is an evanescent
modeswith Imskzd.0d

CT = Cpr + Cev. s11d

This is the case at the frequency range

va , v , vb s12d

in Fig. 6. As the distancez from the slab/vacuum inter-
face increases, the evanescent contributionCev decays as
expf−z Imskzdg, and the resulting transmitted waveCT turns
into a single propagating Bloch eigenmodeCpr.

Similarly to the cases4d of a regular frozen mode, the
axially frozen modeis associated with theaxial stationary
inflection pointdefined as

]v

]kz
= 0,

]2v

]kz
2 = 0,

]3v

]kz
3 Þ 0 at v = v0. s13d

The regular stationary inflection points4d is a particular case
of s13d. An example of an axial dispersion relation display-
ing such a singularity is shown in Fig. 6. In the vicinity ofv0
in Eq. s13d, the electromagnetic fieldCT inside the slab is a
superpositions11d of one propagating and one evanescent
Bloch component. As the frequencyv approaches the critical
point s13d, both contributions grow sharply, while remaining
nearly equal and opposite in sign near the slab boundarysat
z=0d, as illustrated in Fig. 7.

Due to the destructive interference at the slab boundary,
the resulting electromagnetic field atz=0 is small enough to
satisfy the boundary conditionsA12d. As the distancez from
the slab boundary increases, the evanescent componentCev
decays exponentially, while the amplitude of the propagating
componentCpr remains constant and large, as shown in Figs.
8sbd and 8scd.

FIG. 4. sColor onlined. Periodic array of anisotropic dielectric
layerssAd separated by gapssBd. The anisotropy axis of the dielec-
tric material sthe tetragonal axis, in the case of yttrium vanadated
makes an oblique angle with thez direction, normal to the layers.
The stack parameters used in our numerical simulations are speci-
fied in formulass30d and s31d.

FIG. 5. sColor onlined. The axial dispersion relationvskzd of the
periodic stack in Fig. 4 at fixed directionnW of light incidencesnx

=ny=−0.493 489d. The small spectral asymmetry and small branch
separation are due to the weak anisotropy of yttrium vanadate. Both
the asymmetry and the branch separation are more prononced in
upper spectral bands. The wave numberkz and the frequencyv are
given in units of 1/L andc/L, respectively.

BALLATO et al. PHYSICAL REVIEW E 71, 036612s2005d

036612-4



B. Energy density and energy flux of the axially frozen mode

Let SW I, SWR, and SWT be the energy fluxes of the incident,
reflected, and transmitted waves, respectively. Within the fre-
quency ranges12d, which includes the critical points13d, the
transmitted waveCT is a superpositions11d of propagating
and evanescent components. Only the propagating compo-

nentCpr is responsible for the axial energy fluxsSWTdz.
The axial energy flux can also be expressed in terms of

the axial componentuz of the propagating mode group ve-
locity and the energy densityW0 associated withCpr

sSWTdz = W0uz ~ uCpru2uz. s14d

The quantityW0 in Eq. s14d can be interpreted as the elec-
tromagnetic energy density far from the slab interface, where

the electromagnetic fieldCT reduces to its propagating com-
ponentCpr. In the vicinity of the axial stationary inflection
point s13d, the energy densityW0, associated with the axially
frozen mode, diverges, whileuz→0. As a result, the vanish-
ingly small uz in Eq. s14d is offset by a very large value of
W0. The theoretical analysis of the next section shows that

the axial energy fluxsSWTdz in Eq. s14d, along with the slab
transmittancet in Eq. sA20d, remain finite even atv=v0,
where the axial component of the group velocity vanishes,

sSWTdz . 0 if uz = 0. s15d

The energy conservation consideration allows us to find
the asymptotic frequency dependence of the amplitudeuCpru2
of the axially frozen mode in the vicinity of the critical point
s13d. Indeed, in the vicinity ofv0, the axial dispersion rela-

FIG. 6. sColor onlined. A fragment of the axial
dispersion relationvskzd in Fig. 5, which includes
the axial stationary inflection point atv0

=9.164 450 223. Small discontinuities appearing
near stationary points of the spectral branches are
numerical artifacts.

FIG. 7. sColor onlined. Destructive interference of the propagating and evanescent contributions to the resulting fieldCT at the slab/
vacuum interface under the frozen mode regime:sad amplitude uCprs0du2 of the propagating component,sbd amplitude uCevs0du2 of the
evanescent component, andscd resulting field amplitudeuCTs0du2. Frequencyv is expressed in units ofc/L. The incident light has unit
amplitude and TE polarization.
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tion can be approximated by a cubic parabola

v − v0 <
1

6
v0-skz − k0d3, v0- = S ]3v

]kz
3 D

kW=kW0

. s16d

The z component of the group velocity is

uz =
]v

]kz
<

1

2
v0-skz − k0d2 <

62/3

2
sv0-d1/3sv − v0d2/3.

s17d

Equation s17d together with Eq.s14d yield the following
asymptotic expression for the energy densityW0 associated
with the frozen mode:

W0 <
2

62/3sSWTdzsv0-d−1/3sv − v0d−2/3, s18d

or, equivalently,

W0 <
2

62/3tsSW Idzsv0-d−1/3sv − v0d−2/3, s19d

whereSW I is the fixed energy flux of the incident wave andt
is the transmittance coefficient defined in Eq.sA20d. Re-
markably, the transmittancet of the semi-infinite slab re-
mains finite in the vicinity of the frozen mode frequencyv0,
as seen in Figs. 9 and 10. This implies that the electromag-
netic energy densityW0 associated with the frozen mode, as
well as its amplitudeuCpru2, diverge asv→v0. In Figs. 9 and
10 such a behavior is illustrated for two different incident
light polarizations.

In reality, under the axial frozen mode regime, the field
amplitude inside the slab is limited by various physical fac-
tors mentioned earlier in this paper. Still, with all these limi-

tations in place, the normal energy fluxsSWTdz remains finite
and comparable with that of the incident wave. The latter
implies that a substantial portion of the incident wave is
converted into the axially frozen mode with drastically en-
hanced amplitude and nearly zero axial componentuz of the
group velocity. In many respects, the phenomenon of axial
frozen mode is similar to its particular case, the regular fro-

zen mode, associated with the regular stationary inflection
point s4d.

C. Physical conditions for the axially frozen mode regime
in layered media

The physical conditions under which a nonmagnetic lay-
ered structure can support thesaxiald frozen mode regime
can be grouped in two categories. The first one comprises
several symmetry restrictions. The second category includes
some basic qualitative recommendations which would ensure
the robustness of the frozen mode regime, provided that the
symmetry conditions for the regime are met. In what follows
we briefly reiterate those conditions and then show how they
apply to periodic stacks incorporating some real dielectric
materials.

1. Symmetry conditions

There are two fundamental necessary conditions for the
frozen mode regime. The first one is that the Bloch disper-
sion relationvskWd in the periodic layered medium must dis-
play the so-calledaxial spectral asymmetry

vskx,ky,kzd Þ vskx,ky,− kzd. s20d

As shown inf3g, this condition is necessary for the existence
of the axial stationary inflection points13d in the electromag-
netic dispersion relation of an arbitrary periodic layered me-
dium.

The second necessary condition is that for the given di-
rection kW of wave propagation, the Bloch eigenmodesCkW

with different polarizations must have the same symmetry. In
the case of oblique propagation in periodic layered media,
the latter condition implies that for the givenkW, the Bloch
eigenmodes are neither TE nor TM,

CkW is neither TE nor TM. s21d

The conditions20d imposes certain restrictions onsid the
point symmetry groupG of the periodic layered array and
sii d the directionkW of the transmitted wave propagation inside

FIG. 8. sColor onlined. The amplitudeuCszdu2 of the resulting field as a function of the distancez from the slab boundary:sad v=v0,
n=n0, which is the exact point of the frozen mode regime;sbd vÞv0, n=n0, the frequencyv deviates fromv0 by 10−3c/L; scd v=v0,
nÞn0, the directionn of light incidence deviates fromn0 in Eq. s33d by 10−4. The distancez is given in units ofL. The incident light has
unit amplitude and TE polarization.
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the layered medium. The conditions21d may impose some
additional restriction on the direction ofkW.

The restriction on the symmetry of the periodic stack fol-
lowing from the requirements20d of axial spectral asymme-
try is

mz ¹ G and 2z ¹ G, s22d

wheremz is the mirror plane parallel to the layers and 2z is
the twofold rotation about thez axis. An immediate conse-
quence of the criterions22d is that at least one of the alter-
nating layers of the periodic stack must be an anisotropic
dielectric material with nonzero«xz and/or«yz, where thez
direction is normal to the layers,

«xzÞ 0 and/or«yzÞ 0. s23d

Otherwise, the operation 2z will be present in the symmetry
groupG of the periodic stack.

The conditions20d also imposes a restriction on the direc-
tion of wave propagation. Specifically, the Bloch wave vec-
tor kW must be oblique to the stack layers, which means thatkW
is neither parallel nor perpendicular to thez direction,

kx Þ 0 and/orky Þ 0.

The latter condition implies that the frozen mode regime
cannot occur at normal incidence, regardless of the periodic
stack geometry and composition. While the conditions23d
implies that at least one of the alternating layers must be
cut at an oblique angle relative to the principal axes of its
permittivity tensor. If either of the above two conditions is
not satisfied, the dispersion relationvskWd will be axially
symmetric

FIG. 9. sColor onlined. At the top: the solidsredd line shows the amplitudeuCpru2 of the propagating Bloch component of the transmitted
waveCT from Eq.s11d. The dottedsgreend line shows the amplitudeuCevu2 of the evanescent component. Both contributions toCT diverge
at the frozen mode frequencyv0. At z@L, the evanescent component decays anduCpru2 sthe solid lined represents the resulting amplitude
uCTu2 of the transmitted wave. By contrast, atv,va andv.vb, the transmitted waveCT is a superposition of two propagating components
sdouble refractiond. At the bottom: the slab transmittancet vs frequencyv. At v=v0, the transmittance remains finite. The characteristic
frequenciesva, v0, andvb are explained in Fig. 6. The incident wave has TE polarization and unit amplitude. Frequencyv is given in units
of c/L.
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vskx,ky,kzd = vskx,ky,− kzd, s24d

which rules out the possibility of a stationary inflection point
and the frozen mode regime.

If all the above necessary conditions are met, then the
saxiald frozen mode regime is, at least, not forbidden by sym-
metry. More details on the symmetry aspects of the frozen
mode regime can be found inf3g, Sec. II, andf2g, Secs. I and
II.

2. Additional physical requirements

In practice, as soon as the symmetry conditions are met,
one can almost certainly achieve thesaxiald frozen mode
regime at any desirable frequencyv within a certain fre-
quency range. The frequency range is determined by the
layer thicknesses and the dielectric materials used, while a
specific value ofv within the range can be selected by the
directionnW of the light incidence. The problem is that unless
the physical parameters of the stack layers lie within a cer-
tain range, the effects associated with the frozen mode re-
gime can be insignificant or even practically undetectable.
The basic guiding principle in choosing appropriate layer
materials is “moderation.” As soon as the “moderation” prin-
ciple is observed, one can almost certainly achieve the frozen
mode regime at prescribed frequency by choosing the right
direction of light incidence. Specifically, those “moderation”
conditions include the following.

s1d It is desirable that the ratio

Dn

n
s25d

of the birefringence and the refractive index of the material
of the anisotropic layers lies somewhere between 2 and 10. If
the anisotropy is extremely strong or too weak, the Bloch
waves with different polarizations become virtually sepa-
rated, which excludes the possibility of a robust frozen mode

regime. For example, in the practically important case of
extremely small anisotropy, the two transmitted Bloch waves
can be approximately classified as TE and TM modes, which
is incompatible with the symmetry conditions21d for the
frozen mode regime.

s2d The dielectric contrast of the adjacent layersA andB
should be significant, but not extreme. The rationA/nB any-
where between 1.5 and 20 would be appropriate. In addition,
the dielectric contrast between the layers should match the
ratio s25d in the anisotropic layers: weaker anisotropy would
require weaker dielectric contrast between the layers.

s3d Typical layer thickness should be of the order ofl /4n,
wherel=2p /v is the light wavelength in vacuum andn is
the corresponding refractive index. In reality, the acceptable
layer thickness can differ froml /4n by several times either
way. But too thick layers would push the stationary inflection
point to high order frequency bands, while too thin layers
would exclude the possibility of the frozen mode regime at
the prescribed frequency range.

The biggest challenge at optical frequencies poses the first
condition, because most of the commercially available opti-
cal anisotropic crystals have the ratioDn/n of only about
0.1. According tof3g, this would push the axial stationary
inflection point s13d very close to the photonic band edge
and make the photonic crystal almost 100% reflective. This
indeed would be the case if we tried to realize the frozen
mode regime at the lowest frequency band. But, in the next
section we show that one can successfully solve this problem
by moving to a higher frequency band. So a robust axially
frozen mode regime with almost complete conversion of the
incident light into the frozen mode can be achieved with
commercially available anisotropic dielectric materials dis-
playing a birefringence ratios25d smaller by one on two
orders of magnitude, compared to the optimal value used in
f3g for numerical simulations. The drawback though is that
using higher photonic frequency bands narrows the band-
width of the frozen mode regime by roughly an order of
magnitude.

FIG. 10. sColor onlined. The same as in Fig.
9, but the incident wave polarization is now TH.
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III. PERIODIC STACK INCORPORATING YTTRIUM
VANADATE LAYERS

The simplest nonmagnetic periodic stack satisfying the
symmetry conditionss22d ands23d and, therefore, capable of
supporting the axial frozen mode regime, is shown in Fig. 4.
It is composed of anisotropicA layers separated by empty
gaps. The anisotropic dielectric layers must display nonzero
components«xz and/or«yz. The simplest choice for the cor-
responding permittivity tensor is

«̂A = 3«xx 0 «xz

0 «yy 0

«xz 0 «zz
4 s26d

where thez axis coincides with the normal to the layers.
Yttrium vanadate is a tetragonal dielectric with the per-

mittivity tensor «̂YV at l=1550 nmf7g

«̂YV= 3«11 0 0

0 «22 0

0 0 «33
4 = 34.62 0 0

0 4.62 0

0 0 3.78
4 s27d

where the Cartesian axisx3 is chosen parallel to the crystal-
lographic axisC4. In order to achieve a nonzero«xz compo-
nent one has to rotate the tensors27d about they axis by an
angleu different from 0 andp /2 f8g. The result of the rota-
tion is

«̂A = 3«11 cos2 u + «33 sin2 u 0 s«11 − «33dcosu sinu

0 «22 0

s«11 − «33dcosu sinu 0 «33 cos2 u + «11 sin2 u
4 .

s28d

For numerical simulations we can choose, for instance,

u = p/4. s29d

In this case, Eq.s28d together withs27d yields

«̂A = 34.20 0 4.42

0 4.62 0

4.42 0 4.20
4 s30d

which is compatible with the required forms26d.
Let dA anddB denote the thickness of theA layers and the

thickness of the gaps between them, respectively. For our
numerical simulations we can choose

dA = dB = L/2, s31d

whereL is the period of the layered array in Fig. 4.
Let us reiterate that the parameterss29d ands31d are cho-

sen at random. In practice, we can always adjust them so that
the stack suits specific practical requirements. The structural
period L should be chosen so that the frozen mode regime
occurs within a prescribed frequency range. Then, the direc-
tion of light incidence can be adjusted so that the axial frozen
mode regime occurs exactly at a prescribed frequencyv0.

Symmetry arguments similar to those presented inf3g
show that in the case of the periodic array in Fig. 4, the
necessary conditionss22d and s21d for the frozen mode re-

gime are satisfied only if the directionnW of the light inci-
dence lies in neither thex-z nor they-z plane,

nx Þ 0 andny Þ 0. s32d

A. Electromagnetic properties in the vicinity of axial frozen
mode regime

In Fig. 5 we presented the typical axial dispersion relation
vskzd of the periodic stack in Fig. 4 at fixed directionnW of
light incidence. In Fig. 5 we chose

nx = ny = n0 wheren0 = − 0.493 489, s33d

because this particular direction of light incidence produces
the axially frozen mode regime at certain frequencyv0,
shown in Fig. 6. Due to the relatively small anisotropy of
yttrium vanadate, the axial dispersion relation in Fig. 5 dis-
plays rather weak asymmetryvskzdÞvs−kzd, which makes it
virtually impossible to develop a stationary inflection point
at the lowest spectral branches. As we go to upper photonic
bands, the situation improves. In Fig. 6 we present the en-
larged fragment of the axial dispersion relation in Fig. 5.
This fragment covers the boundary region between the forth
and the fifth bands. At frequency

v0 = 9.164 450 223c/L s34d

one of the spectral branches develops axial stationary inflec-
tion point s13d, associated with the possibility of the axial
frozen mode regime.

Our numerical analysis based on the transfer matrix ap-
proachsthe computational details are presented in the Ap-
pendixd indeed shows a very robustsaxiald frozen mode re-
gime in this setting, in spite of the fact that the dielectric
anisotropy of yttrium vanadate is more than an order of mag-
nitude short of the optimal value. The drawback though is
that the frequency bandwidth of the effect is roughly an order
of magnitude narrower, compared to what could be achieved
with hypothetical materials displaying much stronger aniso-
tropy at optical frequencies.

Let us start with the results presented in Figs. 9 and 10.
The bottom plots in both figures display the frequency de-
pendence of the stack transmittancet for two different po-
larizations of incident light. Clearly, in the vicinity of the
frozen mode frequencyv0, the transmittance remains signifi-
cant, which implies that a significant portion of the incident
radiation is converted into the frozen mode. The top plots in
Figs. 9 and 10 display the amplitudes of the two Bloch com-
ponents of the transmitted waveCT. The solid and dotted
lines correspond to the propagating and evanescent Bloch
components, respectively. In the vicinity of the frozen mode
frequencysat va,v,vbd, there is one propagating compo-
nent sCprd and one evanescent componentsCevd, each of
which diverges asv→v0, in accordance with Eq.s19d. At
v,va andv.vb, the transmitted waveCT is a superposi-
tion of two propagating components with different group ve-
locities, which constitutes the phenomenon of double refrac-
tion. The characteristic frequencies in Figs. 9 and 10 are
explained in Fig. 6.

Figure 7 shows the frequency dependence of the resulting
field amplitudeuCTs0du2 at the slab boundary, along with the
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amplitudes of its propagating and evanescent components
uCprs0du2 anduCevs0du2. Although each of the two Bloch con-
tributions to CTs0d diverges asv→v0, their superposition
CTs0d remains finite, to meet the boundary conditionssA12d
at z=0. As we move further away from the slab boundary,
the evanescent component dies out, while the propagating
mode Cprszd remains constant and large. As a result, the
destructive interference ofCprszd andCevszd is removed, and
the resulting field amplitudeuCTszdu2 grows and approaches
the valueuCpru2. This scenario is illustrated in Figs. 8sbd and
8scd. If the frequencyv of the incident wave and its direction
of propagationnW exactly correspond to the critical valuesv0
andnW0, then the electromagnetic fieldCTszd inside the semi-
infinite stack is described by a linearly diverging non-Bloch
Floquet eigenmode

uCTu2 ~ z2,

as shown in Fig. 8sad.
By way of example, let us present the actual geometrical

parameters of the stack supporting the axially frozen mode
regime for the case of infrared light withl=1550 nm and the
direction of incidences33d. The expressions34d for the fro-
zen mode frequency yields

d = L/2 = 1130.4 nm.

In practice, we do not have to adjust the layer thicknesses in
order to achieve the frozen mode regime at a prescribed
wavelength. Instead, we can tune the system into the axially
frozen mode regime by adjusting the directionnW of light
incidence.

IV. CONCLUSIONS

The most important conclusion of our analysis is that a
robust frozen mode regime can be realized in periodic stacks
incorporating generic anisotropic dielectric materials, such as
YVO4, LiNbO3, and CaCO3, where the anisotropy of the
refractive index is well below the optimal value. At optical
frequencies, periodic dielectric arrays can reduce the speed
of pulse propagation by roughly three orders of magnitude.
This is not a fundamental physical limitation, but rather a
technological restriction related to the difficulty of building
flawless periodic arrays at nanoscales. Due to almost com-
plete and lossless conversion of the incident light into the
slow frozen mode, such a slowdown implies the enhance-
ment of the electromagnetic energy density in the slow mode
by the same three orders of magnitude. This can be very
attractive for a variety of practical applications.

Relatively weak anisotropy of generic dielectric materials
imposes more severe bandwidth limitations on the frozen
mode regime, but this can only affect the cases involving
ultrashort light pulses. Otherwise, all the major manifesta-
tions of the frozen mode regime, such as the dramatic in-
crease of the frozen light amplitude compared to that of the
incident light, remain in place.
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APPENDIX: SCATTERING PROBLEM FOR ANISOTROPIC
SEMI-INFINITE STACK

In this appendix we briefly discuss the standard procedure
we use to do the electrodynamics of stratified media incor-
porating anisotropic layers. For more details, see, for ex-
ample,f3,9–11g and references therein.

1. Time-harmonic Maxwell equations in periodic layered
media

Our consideration is based on time-harmonic Maxwell
equations

= 3 Esx,y,zd = i
v

c
Bsx,y,zd,

= 3 Hsx,y,zd = − i
v

c
Dsx,y,zd sA1d

with linear constitutive relations

Dsx,y,zd = «̂szdEsx,y,zd, Bsx,y,zd = m̂szdHsx,y,zd.

sA2d

In layered media, the tensors«̂ andm̂ in Eq. sA2d depend on
a single Cartesian coordinatez. Plugging Eq.sA2d into sA1d
yields

= 3 Esx,y,zd = i
v

c
m̂szdHsx,y,zd,

= 3 Hsx,y,zd = − i
v

c
«̂szdEsx,y,zd. sA3d

Solutions for Eq.sA3d are sought in the following form:

Esx,y,zd = eiskxx+kyydEW szd, Hsx,y,zd = eiskxx+kyydHW szd,

sA4d

which is a standard choice for the scattering problem of a
plane electromagnetic wave incident on a plane-parallel
stratified slab. Indeed, in such a case, due to the boundary
conditionssA11d, the tangential componentsskx,kyd of the
wave vector are the same for the incident, reflected, and
transmitted waves. The substitutionsA4d in Eq. sA3d allows
one to separate the tangential field componentsEx, Ey, Hx, Hy
into a closed system of four linear differential equations,

]zCszd = i
v

c
MszdCszd whereCszd = 3

Exszd
Eyszd
Hxszd
Hyszd

4 .

sA5d

The 434 matrixMszd is referred to as the Maxwell operator.
The reduced Maxwell equationsA5d for the four tangential
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field componentsCszd should be complemented with the fol-
lowing expressions for the normal components of the fields:

Ez = s− nxHy + nyHx − «xz
* Ex − «yz

* Eyd«zz
−1,

Hz = snxEy − nyEx − mxz
* Hx − myz

* Hydmzz
−1, sA6d

where

nx = ckx/v, ny = cky/v. sA7d

The expression for the Maxwell operatorMszd is very
cumbersome; its explicit form can be found inf3g. The ma-
trix elements ofMszd depend on the following parameters:
the frequencyv, the directionnW of light incidence, and the
material tensors«̂szd and m̂szd.

In a periodic layered medium

Msz+ Ld = Mszd, sA8d

whereL is the stack period. For any givenkx, ky, andv, the
system sA5d of four ordinary linear differential equations
with periodic coefficients has four Bloch solutions,

Cki
sz+ Ld = eikiLCki

szd, i = 1,2,3,4, sA9d

whereki, i =1,2,3,4,correspond to four solutions forkz for
given kx, ky, andv,

kx,ky,v ↔ hk1z,k2z,k3z,k4zj = hk1z
* ,k2z

* ,k3z
* ,k4z

* j. sA10d

Realkz in Eq. sA10d relate to propagating Bloch eigenmodes,
while complexkz relate to the evanescent modes. In the case
of propagating eigenmodes, the correspondence betweenkz
and v for fixed kx,ky is referred to as the axial dispersion
relation, the concise form of which is given by Eq.s8d or s9d.

The reduced Maxwell equationssA5d in periodic layered
media are analyzed and solved using the transfer matrix for-
malism, the detailed description of which can be found in the
extensive literature on the subjectssee, for example,f3,9–11g
and references thereind.

2. Boundary conditions

The boundary conditions at the slab/vacuum interface re-
duce to the continuity requirement for the tangential field
components atz=0,

fEIsx,y,0dg' + fERsx,y,0dg' = fETsx,y,0dg',

fH Isx,y,0dg' + fHRsx,y,0dg' = fHTsx,y,0dg', sA11d

where the indicesI, R, andT denote the incident, reflected,
and transmitted waves, respectively. Using representation
sA4d, we can recastsA11d in a compact form

CIs0d + CRs0d = CTs0d sA12d

where

CI = 3
EI,x

EI,y

HI,x

HI,y

4 = 3
EI,x

EI,y

− EI,xnxnynz
−1 − EI,ys1 − nx

2dnz
−1

EI,xs1 − ny
2dnz

−1 + EI,ynxnynz
−1
4 ,

sA13d

CR = 3
ER,x

ER,y

HR,x

HR,y

4 = 3
ER,x

ER,y

ER,xnxnynz
−1 + ER,ys1 − nx

2dnz
−1

− ER,xs1 − ny
2dnz

−1 − ER,ynxnynz
−1
4

describe the incident and reflected waves, respectively.nx,
ny, and nz are the Cartesian components of the unit vector
s10d.

Knowing the eigenmodessA9d inside the slab and using
the boundary conditionssA12d we can express the amplitude
and composition of the transmitted waveCT and reflected
wave CR in terms of the amplitude and polarization of the
incident waveCI. This gives us the electromagnetic field
distributionCTszd inside the layered medium, as well as the
transmittance and reflectance coefficients of the semi-infinite
slab as functions of the incident wave polarization, the direc-
tion nW of incidence, and the frequencyv.

3. Energy flux, reflectance, transmittance

The real-valued Poynting vector is defined by

SWsx,y,zd =
1

2
RefE*sx,y,zd 3 Hsx,y,zdg. sA14d

Plugging the representationsA4d for Esx,y,zd andHsx,y,zd
in Eq. sA14d yields

SWsx,y,zd = SWszd =
1

2
RefEW *szd 3 HW szdg, sA15d

implying that none of the three Cartesian components of the

energy density fluxSW depends on the tangential coordinatesx
andy. In addition, the energy conservation argument implies
that the axial componentSz of the energy flux does not de-
pend on the coordinatez either,

Szsx,y,zd = Sz = const, Sxsx,y,zd = Sxszd, Sysx,y,zd = Syszd.

sA16d

This applies only to the case of a plane monochromatic wave
incident on a lossless layered medium. The explicit expres-
sion for thez component of the energy fluxsA15d is

Sz =
1

2
fEx

*Hy − Ey
*Hx + ExHy

* − EyHx
*g. sA17d

Let us turn to the scattering problem for a semi-infinite

slab. LetSW I, SWR, andSWT be the Poynting vectors of the inci-
dent, reflected, and transmitted waves, respectively. Energy
conservation imposes the following relation between the nor-
mal components of these three vectors:

sSWTdz = sSW Idz + sSWRdz. sA18d

Since the stack is presumably composed of lossless materi-
als, thez component of the energy flux is independent of
coordinates both inside and outside the stack. In particular,
inside the slab we have
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sSWTdz = const. atz. 0. sA19d

The transmittancestd and the reflectancesrd of a lossless
semi-infinite slab are defined as

t =
sSWTdz

sSW Idz

, r = −
sSWRdz

sSW Idz

= 1 −t. sA20d
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